Upper Semicontinuity of Solution Maps for a Parametric Weak Vector Variational Inequality
نویسندگان
چکیده
منابع مشابه
Hölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملLower semicontinuity for parametric set-valued vector equilibrium-like problems
A concept of weak $f$-property for a set-valued mapping is introduced, and then under some suitable assumptions, which do not involve any information about the solution set, the lower semicontinuity of the solution mapping to the parametric set-valued vector equilibrium-like problems are derived by using a density result and scalarization method, where the constraint set $K$...
متن کاملSolution semicontinuity of parametric generalized vector equilibrium problems
In this paper, the lower semicontinuity and continuity of the solution mapping to a parametric generalized vector equilibrium problem involving set-valued mappings are established by using a new proof method which is different from the ones used in the literature.
متن کاملUpper semicontinuity result for the solution mapping of a mixed parametric generalized vector quasiequilibrium problem with moving cones
In this paper, we give sufficient conditions for the upper semicontinuity property of the solution mapping of a parametric generalized vector quasiequilibrium problem with mixed relations and moving cones. The main result is proven under the assumption that moving cones have local openness/local closedness properties and set-valued maps are cone-semicontinuous in a sense weaker than the usual s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2010
ISSN: 1029-242X
DOI: 10.1155/2010/482726